Translate

Monday, 30 September 2013

Location of the Heart

The center of the circulatory system is the heart, which is the main pumping mechanism. The heart is made of muscle. The heart is shaped something like a cone, with a pointed bottom and a round top. It is hollow so that it can fill up with blood. An adult’s heart is about the size of a large orange and weighs a little less than a pound.
The heart is in the middle of the chest. It fits snugly between the two lungs. It is held in place by the blood vessels that carry the blood to and from its chambers. The heart is tipped somewhat so that there is a little more of it on the left side than on the right. The pointed tip at the bottom of the heart touches the front wall of the chest. Every time the heart beats it goes “thump” against the chest wall. You can feel the thumps if you press there with your hand. You can also listen to them with your ear.
                                                             

                                 Structure of the Heart

If you looked inside your heart, you would see that a wall of muscle divides it down the middle, into a left half and a right half. The muscular wall is called a septum. The septum is solid so that blood cannot flow back and forth between the left and right halves of the heart. Another wall separates the rounded top part of the heart from the cone-shaped bottom part. So there are actually four chambers (spaces) inside the heart. Each top chamber is called an atrium (plural: atria). The bottom chambers are called ventricles. The atria are often referred to as holding chambers, while the ventricles are called pumping chambers. Thus, each side of the heart forms its own separate system, a right heart and a left heart. Each half consists of an atrium and a ventricle, and blood can flow from the top chamber to the bottom chamber, or ventricle, but not between the two sides.
                            
        

                                                                    The Circulation of Blood

The human circulatory system is really a two-part system whose purpose is to bring oxygen-bearing blood to all the tissues of the body. When the heart contracts it pushes the blood out into two major loops or cycles. In the systemic loop, the blood circulates into the body’s systems, bringing oxygen to all its organs, structures and tissues and collecting carbon dioxide waste. In the pulmonary loop, the blood circulates to and from the lungs, to release the carbon dioxide and pick up new oxygen. The systemic cycle is controlled by the left side of the heart, the pulmonary cycle by the right side of the heart. Let’s look at what happens during each cycle:

The systemic loop begins when the oxygen-rich blood coming from the lungs enters the upper left chamber of the heart, the left atrium. As the chamber fills, it presses open the mitral valve and the blood flows down into the left ventricle. When the ventricles contract during a heartbeat, the blood on the left side is forced into the aorta. This largest artery of the body is an inch wide. The blood leaving the aorta brings oxygen to all the body’s cells through the network of ever smaller arteries and capillaries. The used blood from the body returns to the heart through the network of veins. All of the blood from the body is eventually collected into the two largest veins: the superior vena cava, which receives blood from the upper body, and the inferior vena  cava, which receives blood from the lower body region. Both venae cavae empty the blood into the right atrium of the heart.

From here the blood begins its journey through the pulmonary cycle. From the right atrium the blood descends into the right ventricle through the tricuspid valve. When the ventricle contracts, the blood is pushed into the pulmonary artery that branches into two main parts: one going to the left lung, one to the right lung. The fresh, oxygen-rich blood returns to the left atrium of the heart through the pulmonary veins.  
Although the circulatory system is made up of two cycles, both happen at the same time. The contraction of the heart muscle starts in the two atria, which push the blood into the ventricles. Then the walls of the ventricles squeeze together and force the blood out into the arteries: the aorta to the body and the pulmonary artery to the lungs. Afterwards, the heart muscle relaxes, allowing blood to flow in from the veins and fill the atria again. In healthy people the normal (resting) heart rate is about 72 beats per minute, but it can go much higher during strenuous exercise. Scientists have estimated that it takes about 30 seconds for a given portion of the blood to complete the entire cycle: from lungs to heart to body, back to the heart and out to the lungs.

Sunday, 29 September 2013


WALKING is just as good for your heart as running, according to US scientists who studied the benefits of exercise.

A brisk walk proved to lower the risk of heart disease, high blood pressure and diabetes slightly more than the same amount of energy expended on vigorous activities.

Scientists said that walking for an hour would be roughly equivalent to a half-hour run in heart-health terms. "Walking and running provide an ideal test of the health benefits of moderate-intensity walking and vigorous-intensity running because they involve the same muscle groups and the same activities performed at different intensities," said Paul T. Williams, of the Lawrence Berkeley National Laboratory in California, who led the study.
"The more the runners ran and the walkers walked, the better off they were in health benefits. If the amount of energy expended was the same between the two groups, then the health benefits  
  were comparable."                        


The risk of high cholesterol fell by 4.3 per cent for running each kilometre but by 7 per cent for walking; the risk of heart disease by 4.5 per cent for running compared with 9.3 per cent for walking, and the risk of diabetes by 12 per cent for both running and walking.
The differences were not big enough to say firmly that walking was better than running, said the report in the journal Arteriosclerosis, Thrombosis and Vascular Biology. Dr Williams said: "Walking may be a more sustainable activity for some when compared to running. However, those who choose running end up exercising twice as much as those that choose walking ... probably because they can do twice as much in an hour. People are always looking for an excuse not to exercise but now they have a straightforward choice to run or to walk and invest in their future health."                                       
The study echoes official advice from chief medical officers in Britain who say that activities such as gardening, walking and golf count towards recommended levels of exercise.
People are advised to do two and a half hours of moderate activity a week, or an hour and a quarter of vigorous exercise, both of which can be taken in ten-minute bursts.Previous research has suggested that intensive exercise, such as running, causes more injuries to joints and muscles but recent studies have cast doubt on that link, concluding that exercise may be good for joints and ward off arthritis in the long term.
Doireann Maddock, senior cardiac nurse at the British Heart Foundation, said: "These scientists have shown us that any brisk physical activity, not just those long, exhausting runs, can be great news for your heart health. We know the best type of activity for your heart is moderate-intensity aerobic activity and that includes walking, as long as you feel warmer, breathe harder and your heart beats faster than usual.
"Whether it's walking, jogging or running, staying active will help to control your weight, reduce blood pressure and cholesterol and improve your mental health."
- See more at: http://www.theaustralian.com.au/news/world/walking-is-as-good-as-jogging-for-heart-health-a-new-study-has-found/story-fnb64oi6-1226613122957#sthash.MUur4FIj.dpuf

Weekly Tips to keep Your Heart Healthy

Eat More
Eat Less
Healthy fats: raw nuts, olive oil, fish oils, flax seeds, or avocados
Trans fats from partially hydrogenated or deep-fried foods; saturated fats from whole-fat dairy or red meat
Nutrients: colorful fruits and vegetables—fresh or frozen, prepared without butter
Packaged foods of any kind, especially those high in sodium
Fiber: cereals, breads, and pasta made from whole grains or legumes
White or egg breads, granola-type cereals, refined pastas or rice
Omega 3 and protein: fish and shellfish, poultry
Red meat, bacon, sausage, fried chicken
Calcium and protein: Egg whites, egg substitutes, skim or 1% milk, low-fat or nonfat cheeses or yogurt
Egg yolks, whole or 2 percent milk, whole milk products like cheese or yogurt


World Heart Day

This year on World Heart Day, as part of our mission to ensure heart health equity for all, we want to create a global community of He...